skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Fuyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Legume nodulation requires the detection of flavonoids in the rhizosphere by rhizobia to activate their production of Nod factor countersignals. Here we investigated the flavonoids involved in nodulation ofMedicago truncatula.We biochemically characterized five flavonoid‐O‐methyltransferases (OMTs) and a lux‐basednodgene reporter was used to investigate the response ofSinorhizobium medicaeNodD1 to various flavonoids.We found that chalcone‐OMT 1 (ChOMT1) and ChOMT3, but not OMT2, 4, and 5, were able to produce 4,4′‐dihydroxy‐2′‐methoxychalcone (DHMC). The bioreporter responded most strongly to DHMC, while isoflavones important for nodulation of soybean (Glycine max) showed no activity. Mutant analysis revealed that loss of ChOMT1 strongly reduced DHMC levels. Furthermore,chomt1andomt2showed strongly reduced bioreporter luminescence in their rhizospheres. In addition, loss of both ChOMT1 and ChOMT3 reduced nodulation, and this phenotype was strengthened by the further loss of OMT2.We conclude that: the loss of ChOMT1 greatly reduces root DHMC levels; ChOMT1 or OMT2 are important fornodgene activation in the rhizosphere; and ChOMT1/3 and OMT2 promote nodulation. Our findings suggest a degree of exclusivity in the flavonoids used for nodulation inM. truncatulacompared to soybean, supporting a role for flavonoids in rhizobial host range. 
    more » « less
  2. Abstract Legumes acquire fixed nitrogen (N) from the soil and through endosymbiotic association with diazotrophic bacteria. However, establishing and maintaining N2-fixing nodules are expensive for the host plant, relative to taking up N from the soil. Therefore, plants suppress symbiosis when N is plentiful and enhance symbiosis when N is sparse. Here, we show that the nitrate transporter MtNRT2.1 is required for optimal nodule establishment in Medicago truncatula under low-nitrate conditions and the repression of nodulation under high-nitrate conditions. The NIN-like protein (NLP) MtNLP1 is required for MtNRT2.1 expression and regulation of nitrate uptake/transport under low- and high-nitrate conditions. Under low nitrate, the gene encoding the C-terminally encoded peptide (CEP) MtCEP1 was more highly expressed, and the exogenous application of MtCEP1 systemically promoted MtNRT2.1 expression in a compact root architecture 2 (MtCRA2)-dependent manner. The enhancement of nodulation by MtCEP1 and nitrate uptake were both impaired in the Mtnrt2.1 mutant under low nitrate. Our study demonstrates that nitrate uptake by MtNRT2.1 differentially affects nodulation at low- and high-nitrate conditions through the actions of MtCEP1 and MtNLP1. 
    more » « less